Chapter 4
 Selection Structures:
 if and switch Statements

Computer Science Department

Control Structure

\square Three kinds of control structures

- Sequence structure
- Programs executed sequentially by default
- Statements executed in order
- Selection structures
- If
- if...e1se
- switch
- Repetition structures
- While
- do...while
- for

Control Structure

Before,

let us study: 1. Relational and equality operators
2. Logical Operators

Relational and equality operators

Four different forms:

1. Variable relational-operator Variable
2. Variable relational-operator Constant
3. Variable equality-operator Variable
4. Variable equality-operator Constant

Note:
You can use an expression instead of the variable or constant

Relational and equality operators

Operator	Meaning	Type
$<$	less than	relational
$>$	greater than	relational
$<=$	less than or equal to	relational
$>=$	greater than or equal to	relational
$==$	equal to	equality
$!=$	not equal to	equality

Logical Operators

- Three types of logical operators:

Operator	Meaning	
$\& \&$	and	
$\\|$	or	
$!$	not	

Operator Precedence

Operator	Precedence	
function calls	highest	
! + - \& (unary operators)		
* / \%		
+ -		
$\ll=>=>$		
== ! $=$		
\&\&		
\|		\downarrow
$=$	lowest	

Example

double $x=3.0, y=4.0, z=2.0$;
int flag=0;

- What is the value after applying the following expression:

$$
\begin{array}{ll}
\text { ! flag } & \rightarrow!0 \text { is } 1 \text { (true) } \\
x+y / z<=3.5 & \rightarrow 5.0<=3.5 \text { is } 0 \text { (false) } \\
\text { ! flag }|\mid(y+z>=x-z) & \rightarrow 1|\mid 1 \text { is } 1 \text { (true) } \\
\text { !(flag } \|(y+z>=x-z)) & \rightarrow!(0 \| 1) \text { is } 0 \text { (false) }
\end{array}
$$

Example
 Evaluation for !flag II ($\mathrm{y}+\mathrm{z}>=\mathrm{x}-\mathrm{z}$)

Example: How to convert an English condition into a logical expression
double $x=3.0, y=4.0, z=2.0$.

English Condition	Logical Expression	Evaluation		
x and y are greater than z	$x>z \& \& y>z$	$1 \& \& 1$ is 1 (true)		
x is equal to 1.0 or 3.0	$x==1.0 \\| x==3.0$	$0 \\| 1$ is 1 (true)		
x is in the range z to y, inclusive	$z<=x \& \& x<=y$	$1 \& \& 1$ is 1 (true)		
x is outside the range z to y	$!(z<=x \& \& x<=y)$ $z>x \\| x>y$	$(1 \& \& 1)$ is 0 (false) 0$\|\mid 0$ is 0 (false)		

Example: Comparing Characters

Expression	Value
	1(true)
	1(true)
	0(false)
	0(false)
	system dependent (false for AscıI)
	1(true) if ch is a lowercase letter

Logical Assignment

```
    #include <stdio.h>
```

 #include <stdio.h>
 #include <stdlib.h>
 #include <stdlib.h>
 int main()
 int main()
 \square\
\square\
int age, senior;
int age, senior;
scanf("%d", \&age);
scanf("%d", \&age);
senior = (age >= 65);
senior = (age >= 65);
printf("Senior Citizen = %d .\n",senior);
printf("Senior Citizen = %d .\n",senior);
return 0;
return 0;
}
}
12

```
12
```


(Assignment Shorthands)

Simple Assignment Operators	Compound Assignment Operators
$x=x+1 ;$	$x+=1 ;$
$x=x-1 ;$	$x-=1 ;$
$x=x^{*} y ;$	$x^{*}=y ;$
$x=x / y ;$	$x /=y ;$
$n=n \%(x+1) ;$	$n \%=x+1 ;$

Pre and Post-Increment

- ++x // Pre-increment x
- x++ // Post-increment x

Example (Pre-increment):

$$
a=++x^{*} b ; \quad \rightarrow \quad \begin{aligned}
& x=x+1 ; \\
& a=x * b ;
\end{aligned}
$$

Pre and Post-Increment

- ++x // Pre-increment x
- $x++$ // Post-increment x

Example (Post-increment):

$$
a=x++{ }^{*} b ; \rightarrow \quad \begin{aligned}
& a=x^{*} b \\
& x=x+1
\end{aligned}
$$

Examples

int $\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}$;	$a=2$	$b=3$	c=
$\mathrm{c}=++\mathrm{a}$ * $\mathrm{b}++$;	a=3	$\mathrm{b}=3$	C=
Find a,b,c ?	$a=3$	$b=3$	$\mathrm{c}=9$
	$a=3$	$\mathrm{b}=4$	$\mathrm{c}=9$
$\mathrm{c}=\mathrm{a} * \mathrm{~b} ;$			
$\mathrm{b}=\mathrm{b}+1$;			

Examples

int $\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=0 ;$ $\mathrm{c}+=--\mathrm{a} * \mathrm{~b}++;$	$\mathbf{a}=\mathbf{a}-\mathbf{1} ;$ $\mathbf{c}=\mathbf{c}+\mathbf{a} * \boldsymbol{b}$ $\mathbf{b}=\mathbf{b}+\mathbf{1}$
Find $\mathrm{a}, \mathrm{b}, \mathrm{c} ?$	

$\mathrm{a}=1, \mathrm{~b}=4$, and $\mathrm{c}=3$

Examples

int $\mathrm{a}=4, \mathrm{~b}=3, \mathrm{c}=20 ;$ $\mathrm{c} /=++\mathrm{a} ;$	$\mathrm{a}=\mathrm{a}+\mathbf{1 ;}$
Find $\mathrm{a}, \mathrm{b}, \mathrm{c}$?	$\mathrm{c}=\mathrm{c} / \mathrm{a} ;$

$a=5, b=3$, and $c=4$

Examples

$$
\begin{aligned}
& \text { int } a=2, b=3, c=4 \\
& c^{*}=++a^{*} b++ \\
& \text { Find } a, b, c ?
\end{aligned}
$$

Pre and Post-Increment- Example

```
#include <stdio.h>
#include <stdlib.h>
```

```
int main()
```

int main()
{
{
int a = 5;
int a = 5;
printf("++a = %d \n",++a);
printf("++a = %d \n",++a);
printf("a = %d \n",a);
printf("a = %d \n",a);
printf("a++ = %d \n",a++);
printf("a++ = %d \n",a++);
printf("a = %d \n\n",a);
printf("a = %d \n\n",a);
return 0;
return 0;
}

```
}
```


If Statement

- If statement with one alternative

```
if (x!=0)
    product = product * x
```

- If statement with two alternatives if (rest_heart_rate >56) printf("Your heart is in execellent health!n"); else printf("Keep up your exercise program!n");

if Statements with Compound Statements

```
if (condition)
{
    true action(s)
}
Else
{
    false action(s)
}
```


Examples

- Write a complete c program to find weather a given integer is odd or even.

```
#include <stdio.h>
int main()
{
    int number;
    printf("Please enter a number");
    scanf("%od", &number);
    if (number%2==0)
        printf("Even Integer");
    else
        printf("Odd Integer");
    return O;
}
```


Examples

- Write a complete c program to find weather a given integer is divisible by three.

```
#include <stdio.h>
int main()
{
    int number;
    printf("Please enter a number");
    scanf("%d", &number);
    if (number%3==0)
        printf("Divisible by three");
        else
            printf("Does not divisible by three");
        return 0;
}
```


Multiple-Alternative Decisions

Nested if statement

an if statement with another if statement as its true task or its false task

```
if (x > 0)
        num_pos = num_pos + 1; //Number of positive numbers
    else if (x < 0)
        num_neg = num_neg +1; // Number of negative numbers
        else
            num_zero = num_zero +1; // Number of zeros
```


Multiple-Alternative Decisions

```
#include <stdio.h>
int main()
{
    int number;
    printf("Please enter a number");
    scanf("%d", &number);
    if (number>0)
        printf("Positive");
    else if (number<0)
    printf("Negative");
    else
            printf("Zero");
    return O;
}
```


Example (if-else)

Example (if, if-else)

include <stdio.h>
int main()
int main()
int x=0;
int x=0;
if (x==0)
if (x==0)
{\mp@code{printf ("hello");}
{\mp@code{printf ("hello");}
else
else
{
{
printf ("hi");
printf ("hi");
printf ("hi3");
printf ("hi3");
}
}
return 0
return 0
\#include <stdio.h> int main()
int $x=5$;
if $(\mathrm{x}<0)$
printf ("hello")
printf ("welcome")
return 0;

Example

int main()
int $x=5$;
if $(x=0)$
printf ("hello");
printf ("welcome"):
return 0;

```
#include <stdio.h>
int main()
{
        int }\textrm{y}=0\mathrm{ ;
        if (y)
        printf ("hello");
    printf ("welcome");
    return 0
}
```

\#include <stdio.h>
int main()
int $\mathrm{y}=8$;
if (y)
printf ("hello");
printf ("welcome"):
\#include <stdio.h>
int main()
\{
int $\mathrm{y}=8, \mathrm{x}=0$;
if ($\mathrm{y}|\mid \mathrm{x}$)
printf ("hello"),
printf ("welcome").
return $0 ;$

Let us review the concepts:

1. If grade has the value of 60 , what will the following code display?

If (grade >= 60)
printf ("Passed");
a. nothing.
b. 60
c. Passed
d. printf("Passed");

The switch Statement

- The switch statement selection is based on the value of a single variable or of a simple expression.
- Expression may be of type int or char, but not of type double or string.
- The multiple selection mechanism in C is the switch statement.

The switch Statement

Before, let us Recall: 1. Multiple Selection with if
2. Multiple Selection with if-else

Multiple Selection with if

```
if (day == 0)
    printf ("Sunday");
if (day == 1)
    printf ("Monday") ;
if (day == 2)
    printf ("Tuesday") ;
if (day == 3)
    printf ("Wednesday");
```

```
if (day == 4)
    printf ("Thursday");
if (day == 5)
    printf ("Friday") ;
if (day == 6)
    printf ("Saturday") ;
if ((day < 0) || (day > 6))
    printf("Error - invalid day.\n");
```


Multiple Selection with if-else

```
if (day == 0) {
    printf("Sunday");
} else if (day == 1 ) {
    printf("Monday");
} else if (day == 2) { printf
    ("Tuesday");
} else if (day == 3) { printf
    ("Wednesday");
} else if (day == 4) {
    printf ("Thursday");
} else if (day == 5) {
    printf ("Friday");
} else if (day = 6) {
    printf ("Saturday");
} else {
    printf("Error - invalid day.\n") ;
}
```

This if-else
structure is more efficient than the corresponding if structure.
Why?

The switch Multiple-Selection Structure

```
switch (expression)
{
    case value,
            statement(s)
            break;
    case value}\mp@subsup{2}{2}{
            statement(s)
            break;
    default::
        statement(s)
        break;
}
```


Switch Statement Details

- The last statement of each case in the switch should almost always be a break.
- The break causes program control to jump to the closing brace of the switch structure.
- Without the break, the code flows into the next case. This is almost never what you want.
- A switch statement will compile without a default case, but always consider using one.

The switch Multiple-Selection Structure

```
switch ( day)
{
    case 0: printf ("Sunday\n");
        break;
    case 1: printf ("Monday\n");
        break;
    case 2: printf("Tuesday\n");
        break;
    case 3: printf ("Wednesday\n");
        break;
    case 4: printf ("Thursday\n") ;
        break;
    case 5: printf ("Friday\n") ;
        break;
    case 6: printf ("Saturday\n");
        break;
    default: printf("Error -- invalid day.\n") ;
        break;
}
```


Why Use a switch Statement?

- A nested if-else structure is just as efficient as a switch statement.
- However, a switch statement may be easier to read.
- Also, it is easier to add new cases to a switch statement than to a nested if-else structure.

Common Programming Errors

The following if statement is true for all values of x !
if($0<=x<=4$)
printf("Condition is tru
Instead, use
if($0<=x \& \&<=4$)

The following always prints the same thing:

$$
\begin{aligned}
& \text { if }(x=10) \\
& \text { printf(" } x \text { is } 10 \ln \text { "); }
\end{aligned}
$$

Common Programming Errors

$$
\begin{aligned}
& \text { If }(x==10) \\
& \left.\quad \text { printf(" } x \text { is } 10^{\prime}\right) ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { If }(x==10) \\
& \quad \text { printf(" } x \text { is } 10 ")
\end{aligned}
$$

$$
\begin{aligned}
& \text { If }(x==10) \\
& \quad \text { printf(" } x \text { is } 10^{\prime}
\end{aligned}
$$

semicolon
printf(" x is 10 ");

Example (Creating Menus)

```
switch( choice )
{
    case 1: printf( "Do edit\n" );
                            break;
    case 2: printf("Do delete\n" );
            break;
    case 3: printf("Done\n");
            break;
    default: printf( "Invalid choice\n" );
            break;
}
```

Example (More Practice)

Write a C program which display color name based on first character of color (small or capital letters).Note: Your program should work with the following colors: white, red and green

```
#include <stdio.h>
int main() {
    char color;
    printf ("Enter the first character of your color: ");
    scanf("%c", &color);
    switch (color) {
    case ' w': case 'W': // for both ' w' and 'W', "White" is displayed
                printf("White\n");
                break;
    case 'r': case 'R': // for both 'r' and ' }R\mathrm{ ', "Red" is displayed
                printf("Red\n");
                break;
    case 'g': case 'G': //for both 'g' and ' G', "Green" is displayed
                printf("Green\n");
                break;
    default:
        printf("Choose among known colors\n");
{
    return 0;
{
```


Example (More Practice)

Write a C program which takes a character as input from the user. Check whether the character is an alphabet or not.

```
#include<stdio.h>
int main()
    char ch;
    printf("Enter the character to be checked: ");
    scanf("%c",&ch);
    //checking if it is a Alphabet
    if( (ch>='A'&&ch<='Z') || (ch>='a'&&ch<='z') )
    {
        printf("The input character is an alphabet\n");
    }
    else
    {
        printf("The input character is NOT an alphabet\n");
    }
```


Example (More Practice)

```
What will be printed by this carelessly constructed switch statement if the
value of color is 'R'?
switch (color) { /* break statements missing */
case 'R':
    printf("red\n");
case 'B':
    printf("blue\n");
case 'Y':
    printf("yellow\\n");
}
```


Extra Exercises

Write a program that takes three numbers as input from the user and finds out whether one of the three numbers is the arithmetic mean of the other two.

For example: Input: 7,15,11
Output: 11 is the mean of 7 and 15

Extra Exercises

Write a program that takes a positive integer in the range 1 to 365 (which corresponds to the day of the year) as input and outputs the day of the week.
Assume that day 1 is Sunday. Make use of the switch statement.
For example: Input: 16
Output: Monday

Extra Exercises

The marks obtained by a student in 5 different subjects are input through the keyboard
The student gets a division as per the following rules:
Percentage above or equal to 60 - First division
Percentage between 50 and 59 - Second division
Percentage between 40 and 49 - Third division
Percentage less than 40 - Fail.
Write a program to calculate the division obtained by the student.
Example (output screen)
Enter marks in five subjects
3426353570
Third division

Program to Check Vowel or consonant

```
#include <stdio.h>
int main()
叩{
    char c;
    int isLowercaseVowel, isUppercaseVowel;
    printf("Enter an alphabet: ");
    scanf("%c",&c);
    // evaluates to l (true) if c is a lowercase vowel
    isLowercaseVowel = (c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u');
    // evaluates to l (true) if c is an uppercase vowel
    isUppercaseVowel = (c == 'A' || c == 'E' || c == 'I' || c == 'O' || c == 'U');
    // evaluates to l (true) if either isLowercaseVowel or isUppercaseVowel is true
    if (isLowercaseVowel || isUppercaseVowel)
        printf("%c is a vowel.", c);
    else
        printf("%% is a consonant.", c);
    return 0;

\section*{A Program uses only if statement to find the largest number among 3 numbers}
```

\#include <stdio.h>
int main()
\boxplus{
double n1, n2, n3;
printf("Enter three different numbers: ");
scanf("%lf %lf %lf", \&n1, \&n2, \&n3):
if(nl>=n2 \&\& nl>=n3)
printf("%.2f is the largest number.", nl);
if(n2>=n1 \&\& n2>=n3)
printf("%.2f is the largest number.", n2);
if(n3>=n1 \&\& n3>=n2)
printf("%.2f is the largest number.", n3);
return 0;
}

```

\section*{A Program uses if...else statement to find the largest number among 3 numbers}
```

\#include <stdio.h>
int main()
G{
double n1, n2, n3;
printf("Enter three numbers: "):
scanf("%lf %lf %lf", \&nl, \&n2, \&n3);
if (nl>=n2)
{
if(nl>=n3)
printf("%.2lf is the largest number.", nl);
else
printf("%.2lf is the largest number.", n3);
}
else
{
if(n2>=n3)
printf("%.2lf is the largest number.", n2);
else
printf("%.2lf is the largest number.",n3);
}
return 0;

```

\section*{A Program uses nested if...else statement to find the largest number among 3 numbers}
```

\#include <stdio.h>
int main()
叩{
double n1, n2, n3;
printf("Enter three numbers: ");
scanf("%lf %lf %lf", \&nl, \&n2, \&n3);
if(nl>=n2 \&\& nl>=n3)
printf("%.2lf is the largest number.", nl);
else if (n2>=n1 \&\& n2>=n3)
printf("%.2lf is the largest number.", n2);
else
printf("%.2lf is the largest number.", n3);
return 0;
}

```

\section*{Extra Exercises}
2. What will be the value of \(i\) after the \(C\) statements at the right have been executed?
\begin{tabular}{|lrl|}
\hline a. & 5 & \(i=3 ;\) \\
b. & 6 & \(j=10 ;\) \\
c. & 8 & if \(((3 * i)<j)\) \\
d. & 10 & \(i=i+i+3 ;\) \\
e. 15 & & \\
\hline
\end{tabular}
3. What is displayed by the \(\mathbf{C}\) statements at the right if the value input is 3 ?
\begin{tabular}{|c|c|c|}
\hline a. & Equal & scanf("\%d", \&n) ; \\
\hline b. & Less & if ( \(\mathrm{n}=5\) ) \\
\hline c . & Greater & printf("Equal\n") ; \\
\hline d. & no output & ```
else if ( }\textrm{n}< < 5
    printf("Less\n");
``` \\
\hline & & else \\
\hline & & printf("Greater\n") \\
\hline
\end{tabular}

\section*{Switch \(X\) and \(Y\) example}
\begin{tabular}{lll}
\hline 1. & if \((\mathrm{x}>\mathrm{y})\) \{ & /* Switch x and y */ \\
2. & temp \(=\mathrm{x} ;\) & /* Store old x in temp */ \\
3. & \(\mathrm{x}=\mathrm{y} ;\) & /* Store old y in x */ \\
4. & \(\mathrm{y}=\) temp; & /* Store old x in y */ \\
5. \} & & \\
\hline
\end{tabular}```

